If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+7t+32=0
a = -16; b = 7; c = +32;
Δ = b2-4ac
Δ = 72-4·(-16)·32
Δ = 2097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2097}=\sqrt{9*233}=\sqrt{9}*\sqrt{233}=3\sqrt{233}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{233}}{2*-16}=\frac{-7-3\sqrt{233}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{233}}{2*-16}=\frac{-7+3\sqrt{233}}{-32} $
| 6n-7n=-2 | | 14-m-2=-52 | | h/3+5=8 | | 0.625x+4=0.375+12 | | 0.16=0.4^x | | 5x=15×4 | | -2+3z=10 | | x=-7+2/3 | | x+3.9=8.77 | | 2(4x+7)=2x-4*8 | | 2x-5(x-2)=-3+5x-27 | | r/3+2=5 | | 2(x)=5x+3 | | (2j-7)/3=25 | | 2.5-0.03x=-1.22 | | j/3+16=19 | | 2j-7/3=25 | | n2-7/3=25 | | j2-7/3=25 | | 7m+2m−8m−1=9 | | 2(f+11)+3=-7 | | (j2-7)/3=25 | | (7x-46)=(3x+6) | | 5w-11=39 | | 2(c=1)=10 | | 2x-4(5+6x)=112 | | r/2+60=65 | | 6x4(3x8)=16 | | t−11.6=2.75 | | 19x^2+5=180 | | 2.5-0.03x=-1.49 | | 12x+5x−13x−1=7 |